Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Resilient Team Formation with Stabilisability of Agent Networks for Task Allocation

Resilient Team Formation with Stabilisability of Agent Networks for Task Allocation Team formation (TF) faces the problem of defining teams of agents able to accomplish a set of tasks. Resilience on TF problems aims to provide robustness and adaptability to unforeseen events involving agent deletion. However, agents are unaware of the inherent social welfare in these teams. This article tackles the problem of how teams can minimise their effort in terms of organisation and communication considering these dynamics. Our main contribution is twofold: first, we introduce the Stabilisable Team Formation (STF) as a generalisation of current resilient TF model, where a team is stabilisable if it possesses and preserves its inter-agent organisation from a graph-based perspective. Second, our experiments show that stabilisability is able to reduce the exponential execution time in several units of magnitude with the most restrictive configurations, proving that communication effort in subsequent task allocation problems are relaxed compared with current resilient teams. To do so, we developed SBB-ST, a branch-and-bound algorithm based on Distributed Constrained Optimisation Problems (DCOP) to compute teams. Results evidence that STF improves their predecessors, extends the resilience to subsequent task allocation problems represented as DCOP, and evidence how Stabilisability contributes to resilient TF problems by anticipating decisions for saving resources and minimising the effort on team organisation in dynamic scenarios. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Transactions on Autonomous and Adaptive Systems (TAAS) Association for Computing Machinery

Resilient Team Formation with Stabilisability of Agent Networks for Task Allocation

Loading next page...
 
/lp/association-for-computing-machinery/resilient-team-formation-with-stabilisability-of-agent-networks-for-AygZgQuPJC
Publisher
Association for Computing Machinery
Copyright
Copyright © 2021 ACM
ISSN
1556-4665
eISSN
1556-4703
DOI
10.1145/3463368
Publisher site
See Article on Publisher Site

Abstract

Team formation (TF) faces the problem of defining teams of agents able to accomplish a set of tasks. Resilience on TF problems aims to provide robustness and adaptability to unforeseen events involving agent deletion. However, agents are unaware of the inherent social welfare in these teams. This article tackles the problem of how teams can minimise their effort in terms of organisation and communication considering these dynamics. Our main contribution is twofold: first, we introduce the Stabilisable Team Formation (STF) as a generalisation of current resilient TF model, where a team is stabilisable if it possesses and preserves its inter-agent organisation from a graph-based perspective. Second, our experiments show that stabilisability is able to reduce the exponential execution time in several units of magnitude with the most restrictive configurations, proving that communication effort in subsequent task allocation problems are relaxed compared with current resilient teams. To do so, we developed SBB-ST, a branch-and-bound algorithm based on Distributed Constrained Optimisation Problems (DCOP) to compute teams. Results evidence that STF improves their predecessors, extends the resilience to subsequent task allocation problems represented as DCOP, and evidence how Stabilisability contributes to resilient TF problems by anticipating decisions for saving resources and minimising the effort on team organisation in dynamic scenarios.

Journal

ACM Transactions on Autonomous and Adaptive Systems (TAAS)Association for Computing Machinery

Published: Jul 13, 2021

Keywords: Resilient AI

References