Access the full text.
Sign up today, get DeepDyve free for 14 days.
A metalogical framework is a logic with an associated methodology that is used to represent other logics and to reason about their metalogical properties. We propose that logical frameworks can be good metalogical frameworks when their theories always have initial models and they support reflective and parameterized reasoning.We develop this thesis both abstractly and concretely. Abstractly, we formalize our proposal as a set of requirements and explain how any logic satisfying these requirements can be used for metalogical reasoning. Concretely, we present membership equational logic as a particular metalogic that satisfies these requirements. Using membership equational logic, and its realization in the Maude system, we show how reflection can be used for different, nontrivial kinds of formal metatheoretic reasoning. In particular, one can prove metatheorems that relate theories or establish properties of parameterized classes of theories.
ACM Transactions on Computational Logic (TOCL) – Association for Computing Machinery
Published: Jul 1, 2004
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.