Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Reflective metalogical frameworks

Reflective metalogical frameworks A metalogical framework is a logic with an associated methodology that is used to represent other logics and to reason about their metalogical properties. We propose that logical frameworks can be good metalogical frameworks when their theories always have initial models and they support reflective and parameterized reasoning.We develop this thesis both abstractly and concretely. Abstractly, we formalize our proposal as a set of requirements and explain how any logic satisfying these requirements can be used for metalogical reasoning. Concretely, we present membership equational logic as a particular metalogic that satisfies these requirements. Using membership equational logic, and its realization in the Maude system, we show how reflection can be used for different, nontrivial kinds of formal metatheoretic reasoning. In particular, one can prove metatheorems that relate theories or establish properties of parameterized classes of theories. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Transactions on Computational Logic (TOCL) Association for Computing Machinery

Loading next page...
 
/lp/association-for-computing-machinery/reflective-metalogical-frameworks-atHoSVSpb4
Publisher
Association for Computing Machinery
Copyright
Copyright © 2004 by ACM Inc.
ISSN
1529-3785
DOI
10.1145/1013560.1013566
Publisher site
See Article on Publisher Site

Abstract

A metalogical framework is a logic with an associated methodology that is used to represent other logics and to reason about their metalogical properties. We propose that logical frameworks can be good metalogical frameworks when their theories always have initial models and they support reflective and parameterized reasoning.We develop this thesis both abstractly and concretely. Abstractly, we formalize our proposal as a set of requirements and explain how any logic satisfying these requirements can be used for metalogical reasoning. Concretely, we present membership equational logic as a particular metalogic that satisfies these requirements. Using membership equational logic, and its realization in the Maude system, we show how reflection can be used for different, nontrivial kinds of formal metatheoretic reasoning. In particular, one can prove metatheorems that relate theories or establish properties of parameterized classes of theories.

Journal

ACM Transactions on Computational Logic (TOCL)Association for Computing Machinery

Published: Jul 1, 2004

There are no references for this article.