Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Reducing power while increasing performance with supercisc

Reducing power while increasing performance with supercisc Multiprocessor Systems on Chips (MPSoCs) have become a popular architectural technique to increase performance. However, MPSoCs may lead to undesirable power consumption characteristics for computing systems that have strict power budgets, such as PDAs, mobile phones, and notebook computers. This paper presents the super-complex instruction-set computing (SuperCISC) Embedded Processor Architecture and, in particular, investigates performance and power consumption of this device compared to traditional processor architecture-based execution. SuperCISC is a heterogeneous, multicore processor architecture designed to exceed performance of traditional embedded processors while maintaining a reduced power budget compared to low-power embedded processors. At the heart of the SuperCISC processor is a multicore VLIW (Very Large Instruction Word) containing several homogeneous execution cores/functional units. In addition, complex and heterogeneous combinational hardware function cores are tightly integrated to the core VLIW engine providing an opportunity for improved performance and reduced energy consumption. Our SuperCISC processor core has been synthesized for both a 90-nm Stratix II Field Programmable Gate Aray (FPGA) and a 160-nm standard cell Application-Specific Integrated Circuit (ASIC) fabrication process from OKI, each operating at approximately 167 MHz for the VLIW core. We examine several reasons for speedup and power improvement through the SuperCISC architecture, including predicated control flow , cycle compression , and a reduction in arithmetic power consumption, which we call power compression . Finally, testing our SuperCISC processor with multimedia and signal-processing benchmarks, we show how the SuperCISC processor can provide performance improvements ranging from 7X to 160X with an average of 60X, while also providing orders of magnitude of power improvements for the computational kernels. The power improvements for our benchmark kernels range from just over 40X to over 400X, with an average savings exceeding 130X. By combining these power and performance improvements, our total energy improvements all exceed 1000X. As these savings are limited to the computational kernels of the applications, which often consume approximately 90% of the execution time, we expect our savings to approach the ideal application improvement of 10X. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Transactions on Embedded Computing Systems (TECS) Association for Computing Machinery

Loading next page...
 
/lp/association-for-computing-machinery/reducing-power-while-increasing-performance-with-supercisc-C5wfDgyGm0

References (58)

Publisher
Association for Computing Machinery
Copyright
Copyright © 2006 by ACM Inc.
ISSN
1539-9087
DOI
10.1145/1165780.1165785
Publisher site
See Article on Publisher Site

Abstract

Multiprocessor Systems on Chips (MPSoCs) have become a popular architectural technique to increase performance. However, MPSoCs may lead to undesirable power consumption characteristics for computing systems that have strict power budgets, such as PDAs, mobile phones, and notebook computers. This paper presents the super-complex instruction-set computing (SuperCISC) Embedded Processor Architecture and, in particular, investigates performance and power consumption of this device compared to traditional processor architecture-based execution. SuperCISC is a heterogeneous, multicore processor architecture designed to exceed performance of traditional embedded processors while maintaining a reduced power budget compared to low-power embedded processors. At the heart of the SuperCISC processor is a multicore VLIW (Very Large Instruction Word) containing several homogeneous execution cores/functional units. In addition, complex and heterogeneous combinational hardware function cores are tightly integrated to the core VLIW engine providing an opportunity for improved performance and reduced energy consumption. Our SuperCISC processor core has been synthesized for both a 90-nm Stratix II Field Programmable Gate Aray (FPGA) and a 160-nm standard cell Application-Specific Integrated Circuit (ASIC) fabrication process from OKI, each operating at approximately 167 MHz for the VLIW core. We examine several reasons for speedup and power improvement through the SuperCISC architecture, including predicated control flow , cycle compression , and a reduction in arithmetic power consumption, which we call power compression . Finally, testing our SuperCISC processor with multimedia and signal-processing benchmarks, we show how the SuperCISC processor can provide performance improvements ranging from 7X to 160X with an average of 60X, while also providing orders of magnitude of power improvements for the computational kernels. The power improvements for our benchmark kernels range from just over 40X to over 400X, with an average savings exceeding 130X. By combining these power and performance improvements, our total energy improvements all exceed 1000X. As these savings are limited to the computational kernels of the applications, which often consume approximately 90% of the execution time, we expect our savings to approach the ideal application improvement of 10X.

Journal

ACM Transactions on Embedded Computing Systems (TECS)Association for Computing Machinery

Published: Aug 1, 2006

There are no references for this article.