Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

PHiLIP on the HiL: Automated Multi-Platform OS Testing With External Reference Devices

PHiLIP on the HiL: Automated Multi-Platform OS Testing With External Reference Devices Developing an operating systems (OSs) for low-end embedded devices requires continuous adaptation to new hardware architectures and components, while serviceability of features needs to be assured for each individual platform under tight resource constraints. It is challenging to design a versatile and accurate heterogeneous test environment that is agile enough to cover a continuous evolution of the code base and platforms. This mission is even more challenging when organized in an agile open-source community process with many contributors such as for the RIOT OS. Hardware in the Loop (HiL) testing and Continuous Integration (CI) are automatable approaches to verify functionality, prevent regressions, and improve the overall quality at development speed in large community projects.In this paper, we present PHiLIP (Primitive Hardware in the Loop Integration Product), an open-source external reference device together with tools that validate the system software while it controls hardware and interprets physical signals. Instead of focusing on a specific test setting, PHiLIP takes the approach of a tool-assisted agile HiL test process, designed for continuous evolution and deployment cycles. We explain its design, describe how it supports HiL tests, evaluate performance metrics, and report on practical experiences of employing PHiLIP in an automated CI test infrastructure. Our initial deployment comprises 22 unique platforms, each of which executes 98 peripheral tests every night. PHiLIP allows for easy extension of low-cost, adaptive testing infrastructures but serves testing techniques and tools to a much wider range of applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Transactions on Embedded Computing Systems (TECS) Association for Computing Machinery

PHiLIP on the HiL: Automated Multi-Platform OS Testing With External Reference Devices

Loading next page...
 
/lp/association-for-computing-machinery/philip-on-the-hil-automated-multi-platform-os-testing-with-external-8hq8v0jC0Y
Publisher
Association for Computing Machinery
Copyright
Copyright © 2021 Association for Computing Machinery.
ISSN
1539-9087
eISSN
1558-3465
DOI
10.1145/3477040
Publisher site
See Article on Publisher Site

Abstract

Developing an operating systems (OSs) for low-end embedded devices requires continuous adaptation to new hardware architectures and components, while serviceability of features needs to be assured for each individual platform under tight resource constraints. It is challenging to design a versatile and accurate heterogeneous test environment that is agile enough to cover a continuous evolution of the code base and platforms. This mission is even more challenging when organized in an agile open-source community process with many contributors such as for the RIOT OS. Hardware in the Loop (HiL) testing and Continuous Integration (CI) are automatable approaches to verify functionality, prevent regressions, and improve the overall quality at development speed in large community projects.In this paper, we present PHiLIP (Primitive Hardware in the Loop Integration Product), an open-source external reference device together with tools that validate the system software while it controls hardware and interprets physical signals. Instead of focusing on a specific test setting, PHiLIP takes the approach of a tool-assisted agile HiL test process, designed for continuous evolution and deployment cycles. We explain its design, describe how it supports HiL tests, evaluate performance metrics, and report on practical experiences of employing PHiLIP in an automated CI test infrastructure. Our initial deployment comprises 22 unique platforms, each of which executes 98 peripheral tests every night. PHiLIP allows for easy extension of low-cost, adaptive testing infrastructures but serves testing techniques and tools to a much wider range of applications.

Journal

ACM Transactions on Embedded Computing Systems (TECS)Association for Computing Machinery

Published: Sep 22, 2021

Keywords: IoT

References