Access the full text.
Sign up today, get DeepDyve free for 14 days.
Outward Influence and Cascade Size Estimation in Billion-scale Networks HUNG T. NGUYEN, TRI P. NGUYEN, Virginia Commonwealth University TAM N. VU, University of Colorado, Boulder & UC Denver THANG N. DINH, Virginia Commonwealth University Estimating cascade size and nodes' influence is a fundamental task in social, technological, and biological networks. Yet this task is extremely challenging due to the sheer size and the structural heterogeneity of networks. We investigate a new influence measure, termed outward influence (OI), defined as the (expected) number of nodes that a subset of nodes S will activate, excluding the nodes in S. Thus, OI equals, the de facto standard measure, influence spread of S minus |S |. OI is not only more informative for nodes with small influence, but also, critical in designing new effective sampling and statistical estimation methods. Based on OI, we propose SIEA/SOIEA, novel methods to estimate influence spread/outward influence at scale and with rigorous theoretical guarantees. The proposed methods are built on two novel components 1) IICP an important sampling method for outward influence; and 2) RSA, a robust mean estimation method that minimize the number of samples through analyzing variance and range of random variables. Compared to the
Proceedings of the ACM on Measurement and Analysis of Computing Systems – Association for Computing Machinery
Published: Jun 13, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.