Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Optimization and Implementation of Wavelet-based Algorithms for Detecting High-voltage Spindles in Neuron Signals

Optimization and Implementation of Wavelet-based Algorithms for Detecting High-voltage Spindles... This article presents a microcontroller unit (MCU) based simplified discrete wavelet transform (Sim-DWT) algorithm that can detect high-voltage spindles (HVSs) in local field potential (LFP) signals. The Sim-DWT algorithm operates in an 8-bit MCU, 8MHz operating clock and 16 sample points of buffers to detect HVSs with a frequency range of 515Hz. The requirement of only sixteen 8-bit sample points as the window length for calculation and no need for a multiplier render the Sim-DWT easy to implement in an MCU with limited hardware resources. The Sim-DWT is applied in an 8-bit MCU with 6mW power consumption (including IO ports) and was tested for detecting LFP signals in vivo. The design methods and the accuracy of three typical types of mother wavelet functions (Haar, DB4, Morlet) in the Sim-DWT were also tested and compared with those of a PC-based system. The experimental results showed that with appropriately designed cMW functions in the Sim-DWT, HVSs could be detected more accurately than they could be in PC-based software. The present study indicates that the optimized HVS detector (Sim-DWT) can be implemented in an 8-bit MCU with limited hardware resources and is suitable to serve as the digital core in a closed-loop deep brain stimulator microsystem in the future. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Transactions on Embedded Computing Systems (TECS) Association for Computing Machinery

Optimization and Implementation of Wavelet-based Algorithms for Detecting High-voltage Spindles in Neuron Signals

Loading next page...
 
/lp/association-for-computing-machinery/optimization-and-implementation-of-wavelet-based-algorithms-for-zDlT5dyewG

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Association for Computing Machinery
Copyright
Copyright © 2019 ACM
ISSN
1539-9087
eISSN
1558-3465
DOI
10.1145/3329864
Publisher site
See Article on Publisher Site

Abstract

This article presents a microcontroller unit (MCU) based simplified discrete wavelet transform (Sim-DWT) algorithm that can detect high-voltage spindles (HVSs) in local field potential (LFP) signals. The Sim-DWT algorithm operates in an 8-bit MCU, 8MHz operating clock and 16 sample points of buffers to detect HVSs with a frequency range of 515Hz. The requirement of only sixteen 8-bit sample points as the window length for calculation and no need for a multiplier render the Sim-DWT easy to implement in an MCU with limited hardware resources. The Sim-DWT is applied in an 8-bit MCU with 6mW power consumption (including IO ports) and was tested for detecting LFP signals in vivo. The design methods and the accuracy of three typical types of mother wavelet functions (Haar, DB4, Morlet) in the Sim-DWT were also tested and compared with those of a PC-based system. The experimental results showed that with appropriately designed cMW functions in the Sim-DWT, HVSs could be detected more accurately than they could be in PC-based software. The present study indicates that the optimized HVS detector (Sim-DWT) can be implemented in an 8-bit MCU with limited hardware resources and is suitable to serve as the digital core in a closed-loop deep brain stimulator microsystem in the future.

Journal

ACM Transactions on Embedded Computing Systems (TECS)Association for Computing Machinery

Published: Jul 18, 2019

Keywords: Discrete wavelet transform (DWT)

References