Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

MV-Net

MV-Net Recently the development of deep learning has been propelling the sheer growth of vision and speech applications on lightweight embedded and mobile systems. However, the limitation of computation resource and power delivery capability in embedded platforms is recognized as a significant bottleneck that prevents the systems from providing real-time deep learning ability, since the inference of deep convolutional neural networks (CNNs) and recurrent neural networks (RNNs) involves large quantities of weights and operations. Particularly, how to provide quality-of-services (QoS)-guaranteed neural network inference ability in the multitask execution environment of multicore SoCs is even more complicated due to the existence of resource contention. In this article, we present a novel deep neural network architecture, MV-Net, which provides performance elasticity and contention-aware self-scheduling ability for QoS enhancement in mobile computing systems. When the constraints of QoS, output accuracy, and resource contention status of the system change, MV-Net can dynamically reconfigure the corresponding neural network propagation paths and thus achieves an effective tradeoff between neural network computational complexity and prediction accuracy via approximate computing. The experimental results show that (1) MV-Net significantly improves the performance flexibility of current CNN models and makes it possible to provide always-guaranteed QoS in a multitask environment, and (2) it satisfies the quality-of-results (QoR) requirement, outperforming the baseline implementation significantly, and improves the system energy efficiency at the same time. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Journal on Emerging Technologies in Computing Systems (JETC) Association for Computing Machinery

Loading next page...
 
/lp/association-for-computing-machinery/mv-net-1KzKcM2ZUU

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Association for Computing Machinery
Copyright
Copyright © 2019 ACM
ISSN
1550-4832
eISSN
1550-4840
DOI
10.1145/3358696
Publisher site
See Article on Publisher Site

Abstract

Recently the development of deep learning has been propelling the sheer growth of vision and speech applications on lightweight embedded and mobile systems. However, the limitation of computation resource and power delivery capability in embedded platforms is recognized as a significant bottleneck that prevents the systems from providing real-time deep learning ability, since the inference of deep convolutional neural networks (CNNs) and recurrent neural networks (RNNs) involves large quantities of weights and operations. Particularly, how to provide quality-of-services (QoS)-guaranteed neural network inference ability in the multitask execution environment of multicore SoCs is even more complicated due to the existence of resource contention. In this article, we present a novel deep neural network architecture, MV-Net, which provides performance elasticity and contention-aware self-scheduling ability for QoS enhancement in mobile computing systems. When the constraints of QoS, output accuracy, and resource contention status of the system change, MV-Net can dynamically reconfigure the corresponding neural network propagation paths and thus achieves an effective tradeoff between neural network computational complexity and prediction accuracy via approximate computing. The experimental results show that (1) MV-Net significantly improves the performance flexibility of current CNN models and makes it possible to provide always-guaranteed QoS in a multitask environment, and (2) it satisfies the quality-of-results (QoR) requirement, outperforming the baseline implementation significantly, and improves the system energy efficiency at the same time.

Journal

ACM Journal on Emerging Technologies in Computing Systems (JETC)Association for Computing Machinery

Published: Oct 3, 2019

Keywords: Edge computing

References