Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

MARS: mmWave-based Assistive Rehabilitation System for Smart Healthcare

MARS: mmWave-based Assistive Rehabilitation System for Smart Healthcare Rehabilitation is a crucial process for patients suffering from motor disorders. The current practice is performing rehabilitation exercises under clinical expert supervision. New approaches are needed to allow patients to perform prescribed exercises at their homes and alleviate commuting requirements, expert shortages, and healthcare costs. Human joint estimation is a substantial component of these programs since it offers valuable visualization and feedback based on body movements. Camera-based systems have been popular for capturing joint motion. However, they have high-cost, raise serious privacy concerns, and require strict lighting and placement settings. We propose a millimeter-wave (mmWave)-based assistive rehabilitation system (MARS) for motor disorders to address these challenges. MARS provides a low-cost solution with a competitive object localization and detection accuracy. It first maps the 5D time-series point cloud from mmWave to a lower dimension. Then, it uses a convolution neural network (CNN) to estimate the accurate location of human joints. MARS can reconstruct 19 human joints and their skeleton from the point cloud generated by mmWave radar. We evaluate MARS using ten specific rehabilitation movements performed by four human subjects involving all body parts and obtain an average mean absolute error of 5.87 cm for all joint positions. To the best of our knowledge, this is the first rehabilitation movements dataset using mmWave point cloud. MARS is evaluated on the Nvidia Jetson Xavier-NX board. Model inference takes only 64 s and consumes 442 J energy. These results demonstrate the practicality of MARS on low-power edge devices. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Transactions on Embedded Computing Systems (TECS) Association for Computing Machinery

MARS: mmWave-based Assistive Rehabilitation System for Smart Healthcare

Loading next page...
 
/lp/association-for-computing-machinery/mars-mmwave-based-assistive-rehabilitation-system-for-smart-healthcare-7T8R9AsVmc
Publisher
Association for Computing Machinery
Copyright
Copyright © 2021 Association for Computing Machinery.
ISSN
1539-9087
eISSN
1558-3465
DOI
10.1145/3477003
Publisher site
See Article on Publisher Site

Abstract

Rehabilitation is a crucial process for patients suffering from motor disorders. The current practice is performing rehabilitation exercises under clinical expert supervision. New approaches are needed to allow patients to perform prescribed exercises at their homes and alleviate commuting requirements, expert shortages, and healthcare costs. Human joint estimation is a substantial component of these programs since it offers valuable visualization and feedback based on body movements. Camera-based systems have been popular for capturing joint motion. However, they have high-cost, raise serious privacy concerns, and require strict lighting and placement settings. We propose a millimeter-wave (mmWave)-based assistive rehabilitation system (MARS) for motor disorders to address these challenges. MARS provides a low-cost solution with a competitive object localization and detection accuracy. It first maps the 5D time-series point cloud from mmWave to a lower dimension. Then, it uses a convolution neural network (CNN) to estimate the accurate location of human joints. MARS can reconstruct 19 human joints and their skeleton from the point cloud generated by mmWave radar. We evaluate MARS using ten specific rehabilitation movements performed by four human subjects involving all body parts and obtain an average mean absolute error of 5.87 cm for all joint positions. To the best of our knowledge, this is the first rehabilitation movements dataset using mmWave point cloud. MARS is evaluated on the Nvidia Jetson Xavier-NX board. Model inference takes only 64 s and consumes 442 J energy. These results demonstrate the practicality of MARS on low-power edge devices.

Journal

ACM Transactions on Embedded Computing Systems (TECS)Association for Computing Machinery

Published: Sep 22, 2021

Keywords: Human pose estimation

References