Access the full text.
Sign up today, get DeepDyve free for 14 days.
We present Lerna, an end-to-end tool that automatically and transparently detects and extracts parallelism from data-dependent sequential loops. Lerna uses speculation combined with a set of techniques including code profiling, dependency analysis, instrumentation, and adaptive execution. Speculation is needed to avoid conservative actions and detect actual conflicts. Lerna targets applications that are hard-to-parallelize due to data dependency. Our experimental study involves the parallelization of 13 applications with data dependencies. Results on a 24-core machine show an average of 2.7 speedup for micro-benchmarks and 2.5 for the macro-benchmarks.
ACM Transactions on Storage (TOS) – Association for Computing Machinery
Published: Mar 22, 2019
Keywords: Code parallelization
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.