Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

GMAI

GMAI Critical real-time systems require strict resource provisioning in terms of memory and timing. The constant need for higher performance in these systems has led industry to recently include GPUs. However, GPU software ecosystems are by their nature closed source, forcing system engineers to consider them as black boxes, complicating resource provisioning. In this work, we reverse engineer the internal operations of the GPU system software to increase the understanding of their observed behaviour and how resources are internally managed. We present our methodology that is incorporated in GMAI (GPU Memory Allocation Inspector), a tool that allows system engineers to accurately determine the exact amount of resources required by their critical systems, avoiding underprovisioning. We first apply our methodology on a wide range of GPU hardware from different vendors showing its generality in obtaining the properties of the GPU memory allocators. Next, we demonstrate the benefits of such knowledge in resource provisioning of two case studies from the automotive domain, where the actual memory consumption is up to 5.6× more than the memory requested by the application. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Transactions on Embedded Computing Systems (TECS) Association for Computing Machinery

Loading next page...
 
/lp/association-for-computing-machinery/gmai-KLg47Y8E1T
Publisher
Association for Computing Machinery
Copyright
Copyright © 2020 ACM
ISSN
1539-9087
eISSN
1558-3465
DOI
10.1145/3391896
Publisher site
See Article on Publisher Site

Abstract

Critical real-time systems require strict resource provisioning in terms of memory and timing. The constant need for higher performance in these systems has led industry to recently include GPUs. However, GPU software ecosystems are by their nature closed source, forcing system engineers to consider them as black boxes, complicating resource provisioning. In this work, we reverse engineer the internal operations of the GPU system software to increase the understanding of their observed behaviour and how resources are internally managed. We present our methodology that is incorporated in GMAI (GPU Memory Allocation Inspector), a tool that allows system engineers to accurately determine the exact amount of resources required by their critical systems, avoiding underprovisioning. We first apply our methodology on a wide range of GPU hardware from different vendors showing its generality in obtaining the properties of the GPU memory allocators. Next, we demonstrate the benefits of such knowledge in resource provisioning of two case studies from the automotive domain, where the actual memory consumption is up to 5.6× more than the memory requested by the application.

Journal

ACM Transactions on Embedded Computing Systems (TECS)Association for Computing Machinery

Published: Sep 26, 2020

Keywords: GPUs

References