Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

GARDENIA

GARDENIA This article presents the Graph Algorithm Repository for Designing Next-generation Accelerators (GARDENIA), a benchmark suite for studying irregular graph algorithms on massively parallel accelerators. Applications with limited control and data irregularity are the main focus of existing generic benchmarks for accelerators, while available graph processing benchmarks do not apply state-of-the-art algorithms and/or optimization techniques. GARDENIA includes emerging graph processing workloads from graph analytics, sparse linear algebra, and machine-learning domains, which mimic massively multithreaded commercial programs running on modern large-scale datacenters. Our characterization shows that GARDENIA exhibits irregular microarchitectural behavior, which is quite different from structured workloads and straightforward-implemented graph benchmarks. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Journal on Emerging Technologies in Computing Systems (JETC) Association for Computing Machinery

Loading next page...
 
/lp/association-for-computing-machinery/gardenia-skWEj0NrJ2

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Association for Computing Machinery
Copyright
Copyright © 2019 ACM
ISSN
1550-4832
eISSN
1550-4840
DOI
10.1145/3283450
Publisher site
See Article on Publisher Site

Abstract

This article presents the Graph Algorithm Repository for Designing Next-generation Accelerators (GARDENIA), a benchmark suite for studying irregular graph algorithms on massively parallel accelerators. Applications with limited control and data irregularity are the main focus of existing generic benchmarks for accelerators, while available graph processing benchmarks do not apply state-of-the-art algorithms and/or optimization techniques. GARDENIA includes emerging graph processing workloads from graph analytics, sparse linear algebra, and machine-learning domains, which mimic massively multithreaded commercial programs running on modern large-scale datacenters. Our characterization shows that GARDENIA exhibits irregular microarchitectural behavior, which is quite different from structured workloads and straightforward-implemented graph benchmarks.

Journal

ACM Journal on Emerging Technologies in Computing Systems (JETC)Association for Computing Machinery

Published: Jan 9, 2019

Keywords: Benchmark suite

References