Access the full text.
Sign up today, get DeepDyve free for 14 days.
Motivated by formal models recently proposed in the context of XML, we study automata and logics on strings over infinite alphabets. These are conservative extensions of classical automata and logics defining the regular languages on finite alphabets. Specifically, we consider register and pebble automata, and extensions of first-order logic and monadic second-order logic. For each type of automaton we consider one-way and two-way variants, as well as deterministic, nondeterministic, and alternating control. We investigate the expressiveness and complexity of the automata and their connection to the logics, as well as standard decision problems. Some of our results answer open questions of Kaminski and Francez on register automata.
ACM Transactions on Computational Logic (TOCL) – Association for Computing Machinery
Published: Jul 1, 2004
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.