Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Evaluating area and performance of hybrid FPGAs with nanoscale clusters and CMOS routing

Evaluating area and performance of hybrid FPGAs with nanoscale clusters and CMOS routing Advances in fabrication technology of nanoscale devices such as nanowires, carbon nanotubes and molecular switches provide new opportunities for implementing cluster-based FPGAs. Extensive research is needed to evaluate area and performance of FPGAs made from these devices and compare with their CMOS counterparts. In this work, we propose a hybrid FPGA that uses nanoscale clusters with a functionality similar to the clusters of traditional CMOS FPGAs. The proposed cluster is constructed by a crossbar of nanowires and can be configured to implement the required LUTs and intracluster MUXes. A CMOS interface is also proposed to provide configuration and memory elements for the nanoscale cluster. In the proposed architecture, inter-cluster routing remains at CMOS scale. We have developed models for area and delay of clusters and interconnects of the proposed hybrid FPGA. FPGA tools are configured with these models and used to synthesize and configure the benchmark circuits onto the hybrid FPGAs with NiSi nanowires or nanotubes. Experiments are conducted to evaluate and compare area and performance of the hybrid FPGA and traditional CMOS FPGA (scaled to 22nm). Up to 82% area reduction was obtained from implementing MCNC benchmarks on the hybrid FPGA. Performance of the hybrid FPGA is shown to be close to that of CMOS FPGA. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Journal on Emerging Technologies in Computing Systems (JETC) Association for Computing Machinery

Evaluating area and performance of hybrid FPGAs with nanoscale clusters and CMOS routing

Loading next page...
 
/lp/association-for-computing-machinery/evaluating-area-and-performance-of-hybrid-fpgas-with-nanoscale-6QVtQEy7D4

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Association for Computing Machinery
Copyright
Copyright © 2007 by ACM Inc.
ISSN
1550-4832
DOI
10.1145/1295231.1295236
Publisher site
See Article on Publisher Site

Abstract

Advances in fabrication technology of nanoscale devices such as nanowires, carbon nanotubes and molecular switches provide new opportunities for implementing cluster-based FPGAs. Extensive research is needed to evaluate area and performance of FPGAs made from these devices and compare with their CMOS counterparts. In this work, we propose a hybrid FPGA that uses nanoscale clusters with a functionality similar to the clusters of traditional CMOS FPGAs. The proposed cluster is constructed by a crossbar of nanowires and can be configured to implement the required LUTs and intracluster MUXes. A CMOS interface is also proposed to provide configuration and memory elements for the nanoscale cluster. In the proposed architecture, inter-cluster routing remains at CMOS scale. We have developed models for area and delay of clusters and interconnects of the proposed hybrid FPGA. FPGA tools are configured with these models and used to synthesize and configure the benchmark circuits onto the hybrid FPGAs with NiSi nanowires or nanotubes. Experiments are conducted to evaluate and compare area and performance of the hybrid FPGA and traditional CMOS FPGA (scaled to 22nm). Up to 82% area reduction was obtained from implementing MCNC benchmarks on the hybrid FPGA. Performance of the hybrid FPGA is shown to be close to that of CMOS FPGA.

Journal

ACM Journal on Emerging Technologies in Computing Systems (JETC)Association for Computing Machinery

Published: Nov 1, 2007

There are no references for this article.