Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Establishing Smartphone User Behavior Model Based on Energy Consumption Data

Establishing Smartphone User Behavior Model Based on Energy Consumption Data In smartphone data analysis, both energy consumption modeling and user behavior mining have been explored extensively, but the relationship between energy consumption and user behavior has been rarely studied. Such a relationship is explored over large-scale users in this article. Based on energy consumption data, where each users’ feature vector is represented by energy breakdown on hardware components of different apps, User Behavior Models (UBM) are established to capture user behavior patterns (i.e., app preference, usage time). The challenge lies in the high diversity of user behaviors (i.e., massive apps and usage ways), which leads to high dimension and dispersion of data. To overcome the challenge, three mechanisms are designed. First, to reduce the dimension, apps are ranked with the top ones identified as typical apps to represent all. Second, the dispersion is reduced by scaling each users’ feature vector with typical apps to unit ℓ1 norm. The scaled vector becomes Usage Pattern, while the ℓ1 norm of vector before scaling is treated as Usage Intensity. Third, the usage pattern is analyzed with a two-layer clustering approach to further reduce data dispersion. In the upper layer, each typical app is studied across its users with respect to hardware components to identify Typical Hardware Usage Patterns (THUP). In the lower layer, users are studied with respect to these THUPs to identify Typical App Usage Patterns (TAUP). The analytical results of these two layers are consolidated into Usage Pattern Models (UPM), and UBMs are finally established by a union of UPMs and Usage Intensity Distributions (UID). By carrying out experiments on energy consumption data from 18,308 distinct users over 10 days, 33 UBMs are extracted from training data. With the test data, it is proven that these UBMs cover 94% user behaviors and achieve up to 20% improvement in accuracy of energy representation, as compared with the baseline method, PCA. Besides, potential applications and implications of these UBMs are illustrated for smartphone manufacturers, app developers, network providers, and so on. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Transactions on Knowledge Discovery from Data (TKDD) Association for Computing Machinery

Establishing Smartphone User Behavior Model Based on Energy Consumption Data

Loading next page...
 
/lp/association-for-computing-machinery/establishing-smartphone-user-behavior-model-based-on-energy-bmfLoblVHp
Publisher
Association for Computing Machinery
Copyright
Copyright © 2021 Association for Computing Machinery.
ISSN
1556-4681
eISSN
1556-472X
DOI
10.1145/3461459
Publisher site
See Article on Publisher Site

Abstract

In smartphone data analysis, both energy consumption modeling and user behavior mining have been explored extensively, but the relationship between energy consumption and user behavior has been rarely studied. Such a relationship is explored over large-scale users in this article. Based on energy consumption data, where each users’ feature vector is represented by energy breakdown on hardware components of different apps, User Behavior Models (UBM) are established to capture user behavior patterns (i.e., app preference, usage time). The challenge lies in the high diversity of user behaviors (i.e., massive apps and usage ways), which leads to high dimension and dispersion of data. To overcome the challenge, three mechanisms are designed. First, to reduce the dimension, apps are ranked with the top ones identified as typical apps to represent all. Second, the dispersion is reduced by scaling each users’ feature vector with typical apps to unit ℓ1 norm. The scaled vector becomes Usage Pattern, while the ℓ1 norm of vector before scaling is treated as Usage Intensity. Third, the usage pattern is analyzed with a two-layer clustering approach to further reduce data dispersion. In the upper layer, each typical app is studied across its users with respect to hardware components to identify Typical Hardware Usage Patterns (THUP). In the lower layer, users are studied with respect to these THUPs to identify Typical App Usage Patterns (TAUP). The analytical results of these two layers are consolidated into Usage Pattern Models (UPM), and UBMs are finally established by a union of UPMs and Usage Intensity Distributions (UID). By carrying out experiments on energy consumption data from 18,308 distinct users over 10 days, 33 UBMs are extracted from training data. With the test data, it is proven that these UBMs cover 94% user behaviors and achieve up to 20% improvement in accuracy of energy representation, as compared with the baseline method, PCA. Besides, potential applications and implications of these UBMs are illustrated for smartphone manufacturers, app developers, network providers, and so on.

Journal

ACM Transactions on Knowledge Discovery from Data (TKDD)Association for Computing Machinery

Published: Jul 21, 2021

Keywords: Data mining

References