Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Designing CMOS/molecular memories while considering device parameter variations

Designing CMOS/molecular memories while considering device parameter variations In recent years, many advances have been made in the development of molecular scale devices. Experimental data shows that these devices have potential for use in both memory and logic. This article describes the challenges faced in building crossbar array-based molecular memory and develops a methodology to optimize molecular scale architectures based on experimental device data taken at room temperature. In particular, issues in reading and writing such as memory using CMOS are discussed, and a solution is introduced for easily reading device conductivity states (typically characterized by very small currents). Additionally, a metric is derived to determine the voltages for writing to the crossbar array. The proposed memory design is also simulated with consideration to device parameter variations. Thus, the results presented here shed light on important design choices to be made at multiple abstraction levels, from devices to architectures. Simulation results, incorporating experimental device data, are presented using Cadence Spectre. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Journal on Emerging Technologies in Computing Systems (JETC) Association for Computing Machinery

Loading next page...
 
/lp/association-for-computing-machinery/designing-cmos-molecular-memories-while-considering-device-parameter-8wW0RHEGog

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Association for Computing Machinery
Copyright
Copyright © 2007 by ACM Inc.
ISSN
1550-4832
DOI
10.1145/1229175.1229178
Publisher site
See Article on Publisher Site

Abstract

In recent years, many advances have been made in the development of molecular scale devices. Experimental data shows that these devices have potential for use in both memory and logic. This article describes the challenges faced in building crossbar array-based molecular memory and develops a methodology to optimize molecular scale architectures based on experimental device data taken at room temperature. In particular, issues in reading and writing such as memory using CMOS are discussed, and a solution is introduced for easily reading device conductivity states (typically characterized by very small currents). Additionally, a metric is derived to determine the voltages for writing to the crossbar array. The proposed memory design is also simulated with consideration to device parameter variations. Thus, the results presented here shed light on important design choices to be made at multiple abstraction levels, from devices to architectures. Simulation results, incorporating experimental device data, are presented using Cadence Spectre.

Journal

ACM Journal on Emerging Technologies in Computing Systems (JETC)Association for Computing Machinery

Published: Apr 1, 2007

References