Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Decentralized Collective Learning for Self-managed Sharing Economies

Decentralized Collective Learning for Self-managed Sharing Economies The Internet of Things equips citizens with a phenomenal new means for online participation in sharing economies. When agents self-determine options from which they choose, for instance, their resource consumption and production, while these choices have a collective systemwide impact, optimal decision-making turns into a combinatorial optimization problem known as NP-hard. In such challenging computational problems, centrally managed (deep) learning systems often require personal data with implications on privacy and citizens’ autonomy. This article envisions an alternative unsupervised and decentralized collective learning approach that preserves privacy, autonomy, and participation of multi-agent systems self-organized into a hierarchical tree structure. Remote interactions orchestrate a highly efficient process for decentralized collective learning. This disruptive concept is realized by I-EPOS, the Iterative Economic Planning and Optimized Selections, accompanied by a paradigmatic software artifact. Strikingly, I-EPOS outperforms related algorithms that involve non-local brute-force operations or exchange full information. This article contributes new experimental findings about the influence of network topology and planning on learning efficiency as well as findings on techno-socio-economic tradeoffs and global optimality. Experimental evaluation with real-world data from energy and bike sharing pilots demonstrates the grand potential of collective learning to design ethically and socially responsible participatory sharing economies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Transactions on Autonomous and Adaptive Systems (TAAS) Association for Computing Machinery

Decentralized Collective Learning for Self-managed Sharing Economies

Loading next page...
 
/lp/association-for-computing-machinery/decentralized-collective-learning-for-self-managed-sharing-economies-xIErgRTe3r

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Association for Computing Machinery
Copyright
Copyright © 2018 Owner/Author
ISSN
1556-4665
eISSN
1556-4703
DOI
10.1145/3277668
Publisher site
See Article on Publisher Site

Abstract

The Internet of Things equips citizens with a phenomenal new means for online participation in sharing economies. When agents self-determine options from which they choose, for instance, their resource consumption and production, while these choices have a collective systemwide impact, optimal decision-making turns into a combinatorial optimization problem known as NP-hard. In such challenging computational problems, centrally managed (deep) learning systems often require personal data with implications on privacy and citizens’ autonomy. This article envisions an alternative unsupervised and decentralized collective learning approach that preserves privacy, autonomy, and participation of multi-agent systems self-organized into a hierarchical tree structure. Remote interactions orchestrate a highly efficient process for decentralized collective learning. This disruptive concept is realized by I-EPOS, the Iterative Economic Planning and Optimized Selections, accompanied by a paradigmatic software artifact. Strikingly, I-EPOS outperforms related algorithms that involve non-local brute-force operations or exchange full information. This article contributes new experimental findings about the influence of network topology and planning on learning efficiency as well as findings on techno-socio-economic tradeoffs and global optimality. Experimental evaluation with real-world data from energy and bike sharing pilots demonstrates the grand potential of collective learning to design ethically and socially responsible participatory sharing economies.

Journal

ACM Transactions on Autonomous and Adaptive Systems (TAAS)Association for Computing Machinery

Published: Nov 26, 2018

Keywords: Computational intelligence

References