Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Continuous-Time Relationship Prediction in Dynamic Heterogeneous Information Networks

Continuous-Time Relationship Prediction in Dynamic Heterogeneous Information Networks Online social networks, World Wide Web, media, and technological networks, and other types of so-called information networks are ubiquitous nowadays. These information networks are inherently heterogeneous and dynamic. They are heterogeneous as they consist of multi-typed objects and relations, and they are dynamic as they are constantly evolving over time. One of the challenging issues in such heterogeneous and dynamic environments is to forecast those relationships in the network that will appear in the future. In this article, we try to solve the problem of continuous-time relationship prediction in dynamic and heterogeneous information networks. This implies predicting the time it takes for a relationship to appear in the future, given its features that have been extracted by considering both heterogeneity and temporal dynamics of the underlying network. To this end, we first introduce a feature extraction framework that combines the power of meta-path-based modeling and recurrent neural networks to effectively extract features suitable for relationship prediction regarding heterogeneity and dynamicity of the networks. Next, we propose a supervised non-parametric approach, called Non-Parametric Generalized Linear Model (Np-Glm), which infers the hidden underlying probability distribution of the relationship building time given its features. We then present a learning algorithm to train Np-Glm and an inference method to answer time-related queries. Extensive experiments conducted on synthetic data and three real-world datasets, namely Delicious, MovieLens, and DBLP, demonstrate the effectiveness of Np-Glm in solving continuous-time relationship prediction problem vis-à-vis competitive baselines. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Transactions on Knowledge Discovery from Data (TKDD) Association for Computing Machinery

Continuous-Time Relationship Prediction in Dynamic Heterogeneous Information Networks

Loading next page...
 
/lp/association-for-computing-machinery/continuous-time-relationship-prediction-in-dynamic-heterogeneous-S8A8wfC9bP

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Association for Computing Machinery
Copyright
Copyright © 2019 ACM
ISSN
1556-4681
eISSN
1556-472X
DOI
10.1145/3333028
Publisher site
See Article on Publisher Site

Abstract

Online social networks, World Wide Web, media, and technological networks, and other types of so-called information networks are ubiquitous nowadays. These information networks are inherently heterogeneous and dynamic. They are heterogeneous as they consist of multi-typed objects and relations, and they are dynamic as they are constantly evolving over time. One of the challenging issues in such heterogeneous and dynamic environments is to forecast those relationships in the network that will appear in the future. In this article, we try to solve the problem of continuous-time relationship prediction in dynamic and heterogeneous information networks. This implies predicting the time it takes for a relationship to appear in the future, given its features that have been extracted by considering both heterogeneity and temporal dynamics of the underlying network. To this end, we first introduce a feature extraction framework that combines the power of meta-path-based modeling and recurrent neural networks to effectively extract features suitable for relationship prediction regarding heterogeneity and dynamicity of the networks. Next, we propose a supervised non-parametric approach, called Non-Parametric Generalized Linear Model (Np-Glm), which infers the hidden underlying probability distribution of the relationship building time given its features. We then present a learning algorithm to train Np-Glm and an inference method to answer time-related queries. Extensive experiments conducted on synthetic data and three real-world datasets, namely Delicious, MovieLens, and DBLP, demonstrate the effectiveness of Np-Glm in solving continuous-time relationship prediction problem vis-à-vis competitive baselines.

Journal

ACM Transactions on Knowledge Discovery from Data (TKDD)Association for Computing Machinery

Published: Jul 29, 2019

Keywords: Link prediction

References