Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

CLU

CLU Convolutional/Deep Neural Networks (CNNs/DNNs) are rapidly growing workloads for the emerging AI-based systems. The gap between the processing speed and the memory-access latency in multi-core systems affects the performance and energy efficiency of the CNN/DNN tasks. This article aims to alleviate this gap by providing a simple and yet efficient near-memory accelerator-based system that expedites the CNN inference. Towards this goal, we first design an efficient parallel algorithm to accelerate CNN/DNN tasks. The data is partitioned across the multiple memory channels (vaults) to assist in the execution of the parallel algorithm. Second, we design a hardware unit, namely the convolutional logic unit (CLU), which implements the parallel algorithm. To optimize the inference, the CLU is designed, and it works in three phases for layer-wise processing of data. Last, to harness the benefits of near-memory processing (NMP), we integrate homogeneous CLUs on the logic layer of the 3D memory, specifically the Hybrid Memory Cube (HMC). The combined effect of these results in a high-performing and energy-efficient system for CNNs/DNNs. The proposed system achieves a substantial gain in the performance and energy reduction compared to multi-core CPU- and GPU-based systems with a minimal area overhead of 2.37%. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Journal on Emerging Technologies in Computing Systems (JETC) Association for Computing Machinery

Loading next page...
 
/lp/association-for-computing-machinery/clu-5LnU4qE0LS
Publisher
Association for Computing Machinery
Copyright
Copyright © 2021 ACM
ISSN
1550-4832
eISSN
1550-4840
DOI
10.1145/3427472
Publisher site
See Article on Publisher Site

Abstract

Convolutional/Deep Neural Networks (CNNs/DNNs) are rapidly growing workloads for the emerging AI-based systems. The gap between the processing speed and the memory-access latency in multi-core systems affects the performance and energy efficiency of the CNN/DNN tasks. This article aims to alleviate this gap by providing a simple and yet efficient near-memory accelerator-based system that expedites the CNN inference. Towards this goal, we first design an efficient parallel algorithm to accelerate CNN/DNN tasks. The data is partitioned across the multiple memory channels (vaults) to assist in the execution of the parallel algorithm. Second, we design a hardware unit, namely the convolutional logic unit (CLU), which implements the parallel algorithm. To optimize the inference, the CLU is designed, and it works in three phases for layer-wise processing of data. Last, to harness the benefits of near-memory processing (NMP), we integrate homogeneous CLUs on the logic layer of the 3D memory, specifically the Hybrid Memory Cube (HMC). The combined effect of these results in a high-performing and energy-efficient system for CNNs/DNNs. The proposed system achieves a substantial gain in the performance and energy reduction compared to multi-core CPU- and GPU-based systems with a minimal area overhead of 2.37%.

Journal

ACM Journal on Emerging Technologies in Computing Systems (JETC)Association for Computing Machinery

Published: Apr 15, 2021

Keywords: 3D-stacked memory

References