Access the full text.
Sign up today, get DeepDyve free for 14 days.
This article presents a new method for obtaining small algebras to check the admissibility—equivalently, validity in free algebras—of quasi-identities in a finitely generated quasivariety. Unlike a previous algebraic approach of Metcalfe and Röthlisberger, which is feasible only when the relevant free algebra is not too large, this method exploits natural dualities for quasivarieties to work with structures of smaller cardinality and surjective rather than injective morphisms. A number of case studies are described here that could not be be solved using the algebraic approach, including (quasi)varieties of MS-algebras, double Stone algebras, and involutive Stone algebras.
ACM Transactions on Computational Logic (TOCL) – Association for Computing Machinery
Published: Dec 20, 2018
Keywords: Quasivariety
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.