Access the full text.
Sign up today, get DeepDyve free for 14 days.
Dynamic cache reconfiguration has been widely explored for energy optimization and performance improvement for single-core systems. Cache partitioning techniques are introduced for the shared cache in multicore systems to alleviate inter-core interference. While these techniques focus only on performance and energy, they ignore vulnerability due to soft errors. In this article, we present a static profiling based algorithm to enable vulnerability-aware energy-optimization for real-time multicore systems. Our approach can efficiently search the space of cache configurations and partitioning schemes for energy optimization while task deadlines and vulnerability constraints are satisfied. A machine learning technique has been employed to minimize the static profiling time without sacrificing the accuracy of results. Our experimental results demonstrate that our approach can achieve 19.2% average energy savings compared with the base configuration, while drastically reducing the vulnerability (49.3% on average) compared to state-of-the-art techniques. Furthermore, the machine learning technique enabled more than 10x speedup in static profiling time with a negligible prediction error of 3%.
ACM Transactions on Embedded Computing Systems (TECS) – Association for Computing Machinery
Published: Apr 2, 2019
Keywords: Vulnerability
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.