Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Being the Center of Attention

Being the Center of Attention This article proposes a novel study on personality recognition using video data from different scenarios. Our goal is to jointly model nonverbal behavioral cues with contextual information for a robust, multi-scenario, personality recognition system. Therefore, we build a novel multi-stream Convolutional Neural Network (CNN) framework, which considers multiple sources of information. From a given scenario, we extract spatio-temporal motion descriptors from every individual in the scene, spatio-temporal motion descriptors encoding social group dynamics, and proxemics descriptors to encode the interaction with the surrounding context. All the proposed descriptors are mapped to the same feature space facilitating the overall learning effort. Experiments on two public datasets demonstrate the effectiveness of jointly modeling the mutual Person-Context information, outperforming the state-of-the art-results for personality recognition in two different scenarios. Last, we present CNN class activation maps for each personality trait, shedding light on behavioral patterns linked with personality attributes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Transactions on Interactive Intelligent Systems (TiiS) Association for Computing Machinery

Loading next page...
 
/lp/association-for-computing-machinery/being-the-center-of-attention-iNlr8yx4KM
Publisher
Association for Computing Machinery
Copyright
Copyright © 2020 ACM
ISSN
2160-6455
eISSN
2160-6463
DOI
10.1145/3338245
Publisher site
See Article on Publisher Site

Abstract

This article proposes a novel study on personality recognition using video data from different scenarios. Our goal is to jointly model nonverbal behavioral cues with contextual information for a robust, multi-scenario, personality recognition system. Therefore, we build a novel multi-stream Convolutional Neural Network (CNN) framework, which considers multiple sources of information. From a given scenario, we extract spatio-temporal motion descriptors from every individual in the scene, spatio-temporal motion descriptors encoding social group dynamics, and proxemics descriptors to encode the interaction with the surrounding context. All the proposed descriptors are mapped to the same feature space facilitating the overall learning effort. Experiments on two public datasets demonstrate the effectiveness of jointly modeling the mutual Person-Context information, outperforming the state-of-the art-results for personality recognition in two different scenarios. Last, we present CNN class activation maps for each personality trait, shedding light on behavioral patterns linked with personality attributes.

Journal

ACM Transactions on Interactive Intelligent Systems (TiiS)Association for Computing Machinery

Published: Nov 9, 2020

Keywords: CNN networks

References