Access the full text.
Sign up today, get DeepDyve free for 14 days.
We study alternating automata with qualitative semantics over infinite binary trees: Alternation means that two opposing players construct a decoration of the input tree called a run, and the qualitative semantics says that a run of the automaton is accepting if almost all branches of the run are accepting. In this article, we prove a positive and a negative result for the emptiness problem of alternating automata with qualitative semantics. The positive result is the decidability of the emptiness problem for the case of Büchi acceptance condition. An interesting aspect of our approach is that we do not extend the classical solution for solving the emptiness problem of alternating automata, which first constructs an equivalent non-deterministic automaton. Instead, we directly construct an emptiness game making use of imperfect information. The negative result is the undecidability of the emptiness problem for the case of co-Büchi acceptance condition. This result has two direct consequences: the undecidability of monadic second-order logic extended with the qualitative path-measure quantifier and the undecidability of the emptiness problem for alternating tree automata with non-zero semantics, a recently introduced probabilistic model of alternating tree automata.
ACM Transactions on Computational Logic (TOCL) – Association for Computing Machinery
Published: Dec 17, 2020
Keywords: -regular conditions
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.