Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A Robust Reputation-Based Group Ranking System and Its Resistance to Bribery

A Robust Reputation-Based Group Ranking System and Its Resistance to Bribery The spread of online reviews and opinions and its growing influence on people’s behavior and decisions boosted the interest to extract meaningful information from this data deluge. Hence, crowdsourced ratings of products and services gained a critical role in business and governments. Current state-of-the-art solutions rank the items with an average of the ratings expressed for an item, with a consequent lack of personalization for the users, and the exposure to attacks and spamming/spurious users. Using these ratings to group users with similar preferences might be useful to present users with items that reflect their preferences and overcome those vulnerabilities. In this article, we propose a new reputation-based ranking system, utilizing multipartite rating subnetworks, which clusters users by their similarities using three measures, two of them based on Kolmogorov complexity. We also study its resistance to bribery and how to design optimal bribing strategies. Our system is novel in that it reflects the diversity of preferences by (possibly) assigning distinct rankings to the same item, for different groups of users. We prove the convergence and efficiency of the system. By testing it on synthetic and real data, we see that it copes better with spamming/spurious users, being more robust to attacks than state-of-the-art approaches. Also, by clustering users, the effect of bribery in the proposed multipartite ranking system is dimmed, comparing to the bipartite case. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Transactions on Knowledge Discovery from Data (TKDD) Association for Computing Machinery

A Robust Reputation-Based Group Ranking System and Its Resistance to Bribery

Loading next page...
 
/lp/association-for-computing-machinery/a-robust-reputation-based-group-ranking-system-and-its-resistance-to-v4VZyV50lw
Publisher
Association for Computing Machinery
Copyright
Copyright © 2021 Association for Computing Machinery.
ISSN
1556-4681
eISSN
1556-472X
DOI
10.1145/3462210
Publisher site
See Article on Publisher Site

Abstract

The spread of online reviews and opinions and its growing influence on people’s behavior and decisions boosted the interest to extract meaningful information from this data deluge. Hence, crowdsourced ratings of products and services gained a critical role in business and governments. Current state-of-the-art solutions rank the items with an average of the ratings expressed for an item, with a consequent lack of personalization for the users, and the exposure to attacks and spamming/spurious users. Using these ratings to group users with similar preferences might be useful to present users with items that reflect their preferences and overcome those vulnerabilities. In this article, we propose a new reputation-based ranking system, utilizing multipartite rating subnetworks, which clusters users by their similarities using three measures, two of them based on Kolmogorov complexity. We also study its resistance to bribery and how to design optimal bribing strategies. Our system is novel in that it reflects the diversity of preferences by (possibly) assigning distinct rankings to the same item, for different groups of users. We prove the convergence and efficiency of the system. By testing it on synthetic and real data, we see that it copes better with spamming/spurious users, being more robust to attacks than state-of-the-art approaches. Also, by clustering users, the effect of bribery in the proposed multipartite ranking system is dimmed, comparing to the bipartite case.

Journal

ACM Transactions on Knowledge Discovery from Data (TKDD)Association for Computing Machinery

Published: Jul 21, 2021

Keywords: Ranking systems

References