Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
The past few years have seen several works exploring learning economic solutions from data, including optimal auction design, function optimization, stable payoffs in cooperative games, and more. In this work, we provide a unified learning-theoretic methodology for modeling such problems and establish tools for determining whether a given solution concept can be efficiently learned from data. Our learning-theoretic framework generalizes a notion of function space dimension—the graph dimension—adapting it to the solution concept learning domain. We identify sufficient conditions for efficient solution learnability and show that results in existing works can be immediately derived using our methodology. Finally, we apply our methods in other economic domains, yielding learning variants of competitive equilibria and Condorcet winners.
ACM Transactions on Economics and Computation – Association for Computing Machinery
Published: Jun 24, 2023
Keywords: Solution concepts
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.