Access the full text.
Sign up today, get DeepDyve free for 14 days.
Hematopoiesis is regulated through the interaction of a variety of growth factors with specific receptors of the cytokine receptor superfamily. Although lacking catalytic domains, all the receptors couple ligand binding to the rapid induction of protein tyrosine phosphorylation. This is mediated through a novel family of protein tyrosine kinases termed the Janus kinases (Jaks) which associate with the receptors and are activated following ligand binding. Depending upon the cytokine/receptor system, one or more of the four known Jaks (Jak l , Jak2, Jak3, lYk2) is/are involved. The activated Jaks phosphorylate both themselves and the receptor subunits, creating docking sites for SH2-containing proteins including SHC, which couples receptor engagement to activation of the ras pathway, and HCP, a protein tyrosine phosphatase which negatively affects the response. In addition, the Iaks phosphorylate one or more of a family of signal transducers and activators of transcription (Stats). Phosphorylation of Stats induces their nuclear translocation and DNA-binding activity. Activation of Stats is independent of activation of the ras pathway and represents a novel signaling pathway correlated with mitogenesis. INTRODUCTION The proliferation and differentiation of the cells that give rise to all the myeloid and lymphoid lineages are controlled by one or more
Annual Review of Immunology – Annual Reviews
Published: Apr 1, 1995
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.