Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Randomized, Placebo-Controlled, Double-Blind Phase 2 Trial Comparing the Reactogenicity and Immunogenicity of a Single Standard Dose to Those of a High Dose of CVD 103-HgR Live Attenuated Oral Cholera Vaccine, with Shanchol Inactivated Oral Vaccine as an Open-Label Immunologic Comparator

Randomized, Placebo-Controlled, Double-Blind Phase 2 Trial Comparing the Reactogenicity and... Reactive immunization with a single-dose cholera vaccine that could rapidly (within days) protect immunologically naive individuals during virgin soil epidemics, when cholera reaches immunologically naive populations that have not experienced cholera for decades, would facilitate cholera control. One dose of attenuated Vibrio choleraeO1 classical Inaba vaccine CVD 103-HgR (Vaxchora) containing ≥2 × 108CFU induces vibriocidal antibody seroconversion (a correlate of protection) in >90% of U.S. adults. A previous CVD 103-HgR commercial formulation required ≥2 × 109CFU to elicit high levels of seroconversion in populations in developing countries. We compared the vibriocidal responses of Malians (individuals 18 to 45 years old) randomized to ingest a single ≥2 × 108-CFU standard dose (n= 50) or a ≥2 × 109-CFU high dose (n= 50) of PaxVax CVD 103-HgR with buffer or two doses (n= 50) of Shanchol inactivated cholera vaccine (the immunologic comparator). To maintain blinding, participants were dosed twice 2 weeks apart; CVD 103-HgR recipients ingested placebo 2 weeks before or after ingesting vaccine. Seroconversion (a ≥4-fold vibriocidal titer rise) between the baseline and 14 days after CVD 103-HgR ingestion and following the first and second doses of Shanchol were the main outcomes measured. By day 14 postvaccination, the rates of seroconversion after ingestion of a single standard dose and a high dose of CVD 103-HgR were 71.7% (33/46 participants) and 83.3% (40/48 participants), respectively. The rate of seroconversion following the first dose of Shanchol, 56.0% (28/50 participants), was significantly lower than that following the high dose of CVD 103-HgR (P= 0.003). The vibriocidal geometric mean titer (GMT) of the high dose of CVD 103-HgR exceeded the GMT of the standard dose at day 14 (214 versus 95, P= 0.045) and was ∼2-fold higher than the GMT on day 7 and day 14 following the first Shanchol dose (P> 0.05). High-dose CVD 103-HgR is recommended for accelerated evaluation in developing countries to assess its efficacy and practicality in field situations. (This study has been registered at ClinicalTrials.gov under registration no. NCT02145377.) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Clinical and Vaccine Immunology American Society For Microbiology

Randomized, Placebo-Controlled, Double-Blind Phase 2 Trial Comparing the Reactogenicity and Immunogenicity of a Single Standard Dose to Those of a High Dose of CVD 103-HgR Live Attenuated Oral Cholera Vaccine, with Shanchol Inactivated Oral Vaccine as an Open-Label Immunologic Comparator

Randomized, Placebo-Controlled, Double-Blind Phase 2 Trial Comparing the Reactogenicity and Immunogenicity of a Single Standard Dose to Those of a High Dose of CVD 103-HgR Live Attenuated Oral Cholera Vaccine, with Shanchol Inactivated Oral Vaccine as an Open-Label Immunologic Comparator

Clinical and Vaccine Immunology , Volume 24 (12) – Dec 1, 2017

Abstract

Reactive immunization with a single-dose cholera vaccine that could rapidly (within days) protect immunologically naive individuals during virgin soil epidemics, when cholera reaches immunologically naive populations that have not experienced cholera for decades, would facilitate cholera control. One dose of attenuated Vibrio choleraeO1 classical Inaba vaccine CVD 103-HgR (Vaxchora) containing ≥2 × 108CFU induces vibriocidal antibody seroconversion (a correlate of protection) in >90% of U.S. adults. A previous CVD 103-HgR commercial formulation required ≥2 × 109CFU to elicit high levels of seroconversion in populations in developing countries. We compared the vibriocidal responses of Malians (individuals 18 to 45 years old) randomized to ingest a single ≥2 × 108-CFU standard dose (n= 50) or a ≥2 × 109-CFU high dose (n= 50) of PaxVax CVD 103-HgR with buffer or two doses (n= 50) of Shanchol inactivated cholera vaccine (the immunologic comparator). To maintain blinding, participants were dosed twice 2 weeks apart; CVD 103-HgR recipients ingested placebo 2 weeks before or after ingesting vaccine. Seroconversion (a ≥4-fold vibriocidal titer rise) between the baseline and 14 days after CVD 103-HgR ingestion and following the first and second doses of Shanchol were the main outcomes measured. By day 14 postvaccination, the rates of seroconversion after ingestion of a single standard dose and a high dose of CVD 103-HgR were 71.7% (33/46 participants) and 83.3% (40/48 participants), respectively. The rate of seroconversion following the first dose of Shanchol, 56.0% (28/50 participants), was significantly lower than that following the high dose of CVD 103-HgR (P= 0.003). The vibriocidal geometric mean titer (GMT) of the high dose of CVD 103-HgR exceeded the GMT of the standard dose at day 14 (214 versus 95, P= 0.045) and was ∼2-fold higher than the GMT on day 7 and day 14 following the first Shanchol dose (P> 0.05). High-dose CVD 103-HgR is recommended for accelerated evaluation in developing countries to assess its efficacy and practicality in field situations. (This study has been registered at ClinicalTrials.gov under registration no. NCT02145377.)

Loading next page...
 
/lp/american-society-for-microbiology/randomized-placebo-controlled-double-blind-phase-2-trial-comparing-the-unJbv7wn47

References (43)

Publisher
American Society For Microbiology
Copyright
Copyright © 2017 Sow et al.
ISSN
1556-6811
eISSN
1556-679X
DOI
10.1128/cvi.00265-17
Publisher site
See Article on Publisher Site

Abstract

Reactive immunization with a single-dose cholera vaccine that could rapidly (within days) protect immunologically naive individuals during virgin soil epidemics, when cholera reaches immunologically naive populations that have not experienced cholera for decades, would facilitate cholera control. One dose of attenuated Vibrio choleraeO1 classical Inaba vaccine CVD 103-HgR (Vaxchora) containing ≥2 × 108CFU induces vibriocidal antibody seroconversion (a correlate of protection) in >90% of U.S. adults. A previous CVD 103-HgR commercial formulation required ≥2 × 109CFU to elicit high levels of seroconversion in populations in developing countries. We compared the vibriocidal responses of Malians (individuals 18 to 45 years old) randomized to ingest a single ≥2 × 108-CFU standard dose (n= 50) or a ≥2 × 109-CFU high dose (n= 50) of PaxVax CVD 103-HgR with buffer or two doses (n= 50) of Shanchol inactivated cholera vaccine (the immunologic comparator). To maintain blinding, participants were dosed twice 2 weeks apart; CVD 103-HgR recipients ingested placebo 2 weeks before or after ingesting vaccine. Seroconversion (a ≥4-fold vibriocidal titer rise) between the baseline and 14 days after CVD 103-HgR ingestion and following the first and second doses of Shanchol were the main outcomes measured. By day 14 postvaccination, the rates of seroconversion after ingestion of a single standard dose and a high dose of CVD 103-HgR were 71.7% (33/46 participants) and 83.3% (40/48 participants), respectively. The rate of seroconversion following the first dose of Shanchol, 56.0% (28/50 participants), was significantly lower than that following the high dose of CVD 103-HgR (P= 0.003). The vibriocidal geometric mean titer (GMT) of the high dose of CVD 103-HgR exceeded the GMT of the standard dose at day 14 (214 versus 95, P= 0.045) and was ∼2-fold higher than the GMT on day 7 and day 14 following the first Shanchol dose (P> 0.05). High-dose CVD 103-HgR is recommended for accelerated evaluation in developing countries to assess its efficacy and practicality in field situations. (This study has been registered at ClinicalTrials.gov under registration no. NCT02145377.)

Journal

Clinical and Vaccine ImmunologyAmerican Society For Microbiology

Published: Dec 1, 2017

There are no references for this article.