Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Multiplex Assay Detection of Immunoglobulin G Antibodies That Recognize Giardia intestinalis and Cryptosporidium parvum Antigens

Multiplex Assay Detection of Immunoglobulin G Antibodies That Recognize Giardia intestinalis and... Giardiasis and cryptosporidiosis are common enteric parasitic diseases that have similar routes of transmission. In this work, we have identified epitopes within the Giardia variant-specific surface protein (VSP) sequences that are recognized by IgG antibodies from 13 of 14 (93%) sera from patients with stool-confirmed giardiasis. The conserved epitopes are shared among VSPs from both of the assemblages that commonly infect humans, and they are likely to be structural, as both sodium dodecyl sulfate treatment and dithiothreitol reduction decrease antibody recognition. In a multiplex bead assay (MBA), we used three VSP fragments from an assemblage A Giardia strain, three VSP fragments from assemblage B strains, and the -1 giardin structural antigen to detect IgG antibodies to Giardia and used the recombinant 17- and 27-kDa antigens to simultaneously detect IgG antibodies to Cryptosporidium . The MBA differentiated between sera from Giardia and Cryptosporidium outbreaks and also identified a giardiasis outbreak that may have included cryptosporidiosis cases. Approximately 40% of cryptosporidiosis outbreak samples had high MBA responses for both the 27- and 17-kDa antigens, while <10% of nonoutbreak and giardiasis outbreak samples had high responses. At least 60% of giardiasis outbreak samples were positive for antibodies to multiple Giardia antigens, while 12% of nonoutbreak samples and samples from U.S. and British Columbia cryptosporidiosis outbreaks met our definition for Giardia seropositivity. A MBA using multiple parasite antigens may prove useful in the epidemiologic analysis of future waterborne or food-borne outbreaks of diarrheal disease. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Clinical and Vaccine Immunology American Society For Microbiology

Multiplex Assay Detection of Immunoglobulin G Antibodies That Recognize Giardia intestinalis and Cryptosporidium parvum Antigens

Multiplex Assay Detection of Immunoglobulin G Antibodies That Recognize Giardia intestinalis and Cryptosporidium parvum Antigens

Clinical and Vaccine Immunology , Volume 17 (11): 1695 – Nov 1, 2010

Abstract

Giardiasis and cryptosporidiosis are common enteric parasitic diseases that have similar routes of transmission. In this work, we have identified epitopes within the Giardia variant-specific surface protein (VSP) sequences that are recognized by IgG antibodies from 13 of 14 (93%) sera from patients with stool-confirmed giardiasis. The conserved epitopes are shared among VSPs from both of the assemblages that commonly infect humans, and they are likely to be structural, as both sodium dodecyl sulfate treatment and dithiothreitol reduction decrease antibody recognition. In a multiplex bead assay (MBA), we used three VSP fragments from an assemblage A Giardia strain, three VSP fragments from assemblage B strains, and the -1 giardin structural antigen to detect IgG antibodies to Giardia and used the recombinant 17- and 27-kDa antigens to simultaneously detect IgG antibodies to Cryptosporidium . The MBA differentiated between sera from Giardia and Cryptosporidium outbreaks and also identified a giardiasis outbreak that may have included cryptosporidiosis cases. Approximately 40% of cryptosporidiosis outbreak samples had high MBA responses for both the 27- and 17-kDa antigens, while <10% of nonoutbreak and giardiasis outbreak samples had high responses. At least 60% of giardiasis outbreak samples were positive for antibodies to multiple Giardia antigens, while 12% of nonoutbreak samples and samples from U.S. and British Columbia cryptosporidiosis outbreaks met our definition for Giardia seropositivity. A MBA using multiple parasite antigens may prove useful in the epidemiologic analysis of future waterborne or food-borne outbreaks of diarrheal disease.

Loading next page...
 
/lp/american-society-for-microbiology/multiplex-assay-detection-of-immunoglobulin-g-antibodies-that-CdK2n85nwV

References (94)

Publisher
American Society For Microbiology
Copyright
Copyright © 2010 by the American Society For Microbiology.
ISSN
1556-6811
eISSN
1556-6811
DOI
10.1128/CVI.00160-10
Publisher site
See Article on Publisher Site

Abstract

Giardiasis and cryptosporidiosis are common enteric parasitic diseases that have similar routes of transmission. In this work, we have identified epitopes within the Giardia variant-specific surface protein (VSP) sequences that are recognized by IgG antibodies from 13 of 14 (93%) sera from patients with stool-confirmed giardiasis. The conserved epitopes are shared among VSPs from both of the assemblages that commonly infect humans, and they are likely to be structural, as both sodium dodecyl sulfate treatment and dithiothreitol reduction decrease antibody recognition. In a multiplex bead assay (MBA), we used three VSP fragments from an assemblage A Giardia strain, three VSP fragments from assemblage B strains, and the -1 giardin structural antigen to detect IgG antibodies to Giardia and used the recombinant 17- and 27-kDa antigens to simultaneously detect IgG antibodies to Cryptosporidium . The MBA differentiated between sera from Giardia and Cryptosporidium outbreaks and also identified a giardiasis outbreak that may have included cryptosporidiosis cases. Approximately 40% of cryptosporidiosis outbreak samples had high MBA responses for both the 27- and 17-kDa antigens, while <10% of nonoutbreak and giardiasis outbreak samples had high responses. At least 60% of giardiasis outbreak samples were positive for antibodies to multiple Giardia antigens, while 12% of nonoutbreak samples and samples from U.S. and British Columbia cryptosporidiosis outbreaks met our definition for Giardia seropositivity. A MBA using multiple parasite antigens may prove useful in the epidemiologic analysis of future waterborne or food-borne outbreaks of diarrheal disease.

Journal

Clinical and Vaccine ImmunologyAmerican Society For Microbiology

Published: Nov 1, 2010

There are no references for this article.