Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Space-time characteristics of wall-pressure and wall shear-stress fluctuations in wall-modeled large eddy simulation

Space-time characteristics of wall-pressure and wall shear-stress fluctuations in wall-modeled... We report the space-time characteristics of the wall-pressure fluctuations and wall shear-stress fluctuations from wall-modeled large eddy simulation (WMLES) of a turbulent channel flow at Re τ = 2000 . Two standard zonal wall models (equilibrium stress model and nonequilibrium model based on unsteady RANS) are employed, and it is shown that they yield similar results in predicting these quantities. The wall-pressure and wall shear-stress fields from WMLES are analyzed in terms of their r.m.s. fluctuations, spectra, two-point correlations, and convection velocities. It is demonstrated that the resolution requirement for predicting the wall-pressure fluctuations is more stringent than that for predicting the velocity. At least δ / Δ x > 20 and δ / Δ z > 30 are required to marginally resolve the integral length scales of the pressure-producing eddies near the wall. Otherwise, the pressure field is potentially aliased. Spurious high wave number modes dominate in the streamwise direction, and they contaminate the pressure spectra leading to significant overprediction of the second-order pressure statistics. When these conditions are met, the pressure statistics and spectra at low wave number or low frequency agree well with the DNS and experimental data. On the contrary, the wall shear-stress fluctuations, modeled entirely through the RANS-based wall models, are largely underpredicted and relatively insensitive to the grid resolution. The short-time, small-scale near-wall eddies, which are neither resolved nor modeled adequately in the wall models, seem to be important for accurate prediction of the wall shear-stress fluctuations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Fluids American Physical Society (APS)

Space-time characteristics of wall-pressure and wall shear-stress fluctuations in wall-modeled large eddy simulation

Physical Review Fluids , Volume 1 (2): 17 – Jun 20, 2016

Space-time characteristics of wall-pressure and wall shear-stress fluctuations in wall-modeled large eddy simulation

Physical Review Fluids , Volume 1 (2): 17 – Jun 20, 2016

Abstract

We report the space-time characteristics of the wall-pressure fluctuations and wall shear-stress fluctuations from wall-modeled large eddy simulation (WMLES) of a turbulent channel flow at Re τ = 2000 . Two standard zonal wall models (equilibrium stress model and nonequilibrium model based on unsteady RANS) are employed, and it is shown that they yield similar results in predicting these quantities. The wall-pressure and wall shear-stress fields from WMLES are analyzed in terms of their r.m.s. fluctuations, spectra, two-point correlations, and convection velocities. It is demonstrated that the resolution requirement for predicting the wall-pressure fluctuations is more stringent than that for predicting the velocity. At least δ / Δ x > 20 and δ / Δ z > 30 are required to marginally resolve the integral length scales of the pressure-producing eddies near the wall. Otherwise, the pressure field is potentially aliased. Spurious high wave number modes dominate in the streamwise direction, and they contaminate the pressure spectra leading to significant overprediction of the second-order pressure statistics. When these conditions are met, the pressure statistics and spectra at low wave number or low frequency agree well with the DNS and experimental data. On the contrary, the wall shear-stress fluctuations, modeled entirely through the RANS-based wall models, are largely underpredicted and relatively insensitive to the grid resolution. The short-time, small-scale near-wall eddies, which are neither resolved nor modeled adequately in the wall models, seem to be important for accurate prediction of the wall shear-stress fluctuations.

Loading next page...
 
/lp/american-physical-society-aps/space-time-characteristics-of-wall-pressure-and-wall-shear-stress-9C73S5ALa3

References (44)

Publisher
American Physical Society (APS)
Copyright
©2016 American Physical Society
Subject
ARTICLES; Turbulent flows
ISSN
2469-990X
eISSN
2469-990X
DOI
10.1103/PhysRevFluids.1.024404
Publisher site
See Article on Publisher Site

Abstract

We report the space-time characteristics of the wall-pressure fluctuations and wall shear-stress fluctuations from wall-modeled large eddy simulation (WMLES) of a turbulent channel flow at Re τ = 2000 . Two standard zonal wall models (equilibrium stress model and nonequilibrium model based on unsteady RANS) are employed, and it is shown that they yield similar results in predicting these quantities. The wall-pressure and wall shear-stress fields from WMLES are analyzed in terms of their r.m.s. fluctuations, spectra, two-point correlations, and convection velocities. It is demonstrated that the resolution requirement for predicting the wall-pressure fluctuations is more stringent than that for predicting the velocity. At least δ / Δ x > 20 and δ / Δ z > 30 are required to marginally resolve the integral length scales of the pressure-producing eddies near the wall. Otherwise, the pressure field is potentially aliased. Spurious high wave number modes dominate in the streamwise direction, and they contaminate the pressure spectra leading to significant overprediction of the second-order pressure statistics. When these conditions are met, the pressure statistics and spectra at low wave number or low frequency agree well with the DNS and experimental data. On the contrary, the wall shear-stress fluctuations, modeled entirely through the RANS-based wall models, are largely underpredicted and relatively insensitive to the grid resolution. The short-time, small-scale near-wall eddies, which are neither resolved nor modeled adequately in the wall models, seem to be important for accurate prediction of the wall shear-stress fluctuations.

Journal

Physical Review FluidsAmerican Physical Society (APS)

Published: Jun 20, 2016

There are no references for this article.