Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Inconsistent Global Kinetic Energy Spectra in Reanalyses and Models

Inconsistent Global Kinetic Energy Spectra in Reanalyses and Models AbstractGlobal upper-tropospheric kinetic energy (KE) spectra in several global atmospheric circulation datasets are examined. The datasets considered include ERA-Interim, JRA-55, and ERA5 and two versions of NOAA GFS analyses at horizontal resolutions ranging from 0.7° to 0.12°. The mesoscale portions of the spectra are found to be highly inconsistent. This is shown to be mainly due to inconsistencies in the scale-dependent numerical damping and in the large contributions to the global mesoscale KE from the KE in convective regions and near orography. The spectra also generally have a steeper mesoscale slope than the −5/3 slope of the observational Nastrom–Gage spectrum pursued at many modeling centers. The sensitivity of the slope in global models to 1) stochastically perturbing diabatic tendencies and 2) decreasing the horizontal hyperviscosity coefficient is explored in large ensembles of 10-day forecasts made with the NCEP GFS (0.7° grid) model. Both changes lead to larger mesoscale KE and a flatter spectral slope. The effect is stronger in the modified hyperviscosity experiment. These results show that (i) despite assimilating vastly more observations than used in the original Nastrom–Gage studies, current high-resolution global analyses still do not converge to a single “true” global mesoscale KE spectrum, and (ii) model KE spectra can be made flatter not just by increasing model resolution but also by perturbing model physics and decreasing horizontal diffusion. Such sensitivities and lack of consensus on the spectral slope also raise the possibility that the true global mesoscale spectral slope may not be a precisely −5/3 slope. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Inconsistent Global Kinetic Energy Spectra in Reanalyses and Models

Loading next page...
 
/lp/american-meteorological-society/inconsistent-global-kinetic-energy-spectra-in-reanalyses-and-models-OMfKGr0V0T

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
eISSN
1520-0469
DOI
10.1175/JAS-D-20-0294.1
Publisher site
See Article on Publisher Site

Abstract

AbstractGlobal upper-tropospheric kinetic energy (KE) spectra in several global atmospheric circulation datasets are examined. The datasets considered include ERA-Interim, JRA-55, and ERA5 and two versions of NOAA GFS analyses at horizontal resolutions ranging from 0.7° to 0.12°. The mesoscale portions of the spectra are found to be highly inconsistent. This is shown to be mainly due to inconsistencies in the scale-dependent numerical damping and in the large contributions to the global mesoscale KE from the KE in convective regions and near orography. The spectra also generally have a steeper mesoscale slope than the −5/3 slope of the observational Nastrom–Gage spectrum pursued at many modeling centers. The sensitivity of the slope in global models to 1) stochastically perturbing diabatic tendencies and 2) decreasing the horizontal hyperviscosity coefficient is explored in large ensembles of 10-day forecasts made with the NCEP GFS (0.7° grid) model. Both changes lead to larger mesoscale KE and a flatter spectral slope. The effect is stronger in the modified hyperviscosity experiment. These results show that (i) despite assimilating vastly more observations than used in the original Nastrom–Gage studies, current high-resolution global analyses still do not converge to a single “true” global mesoscale KE spectrum, and (ii) model KE spectra can be made flatter not just by increasing model resolution but also by perturbing model physics and decreasing horizontal diffusion. Such sensitivities and lack of consensus on the spectral slope also raise the possibility that the true global mesoscale spectral slope may not be a precisely −5/3 slope.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Aug 29, 2021

References