Access the full text.
Sign up today, get DeepDyve free for 14 days.
AbstractWe consider a network model where individuals exert efforts in two types of activities that are interdependent. These activities can be either substitutes or complements. We provide a full characterization of the Nash equilibrium of this game for any network structure. We show, in particular, that quadratic games with linear best-reply functions aggregate nicely to multiple activities because equilibrium efforts obey similar formulas to that of the one-activity case. We then derive some comparative-statics results showing how own productivity affects equilibrium efforts and how network density impacts equilibrium outcomes. (JEL C72, D11, D85, Z13)
American Economic Journal: Microeconomics – American Economic Association
Published: Aug 1, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.