Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Rodent Plasmodium: Population Dynamics of Early Sporogony within Anopheles stephensi Mosquitoes

Rodent Plasmodium: Population Dynamics of Early Sporogony within Anopheles stephensi Mosquitoes Early sporogony of Plasmodium parasites involves 2 major developmental transitions within the insect vector, i.e., gametocyte-to-ookinete and ookinete-to-oocyst. This study compared the population dynamics of early sporogony among murine rodent Plasmodium (Plasmodium berghei, Plasmodium chabaudi, Plasmodium vinckei, and Plasmodium yoelii) developing within Anopheles stephensi mosquitoes. Estimates of absolute densities were determined for gametocytes, ookinetes, and oocysts for 108 experimental infections. Total losses throughout early sporogony were greatest in P. vinckei (ca. 250,000-fold loss), followed by P. yoelii (ca. 70,000-fold loss), P. berghei (ca. 45,000-fold loss), and P. chabaudi (ca. 15,000-fold loss). The gametocyte-to-ookinete transition represented the most severe population bottleneck. Numerical losses during this transition (ca. 3,000- to 30,000-fold, depending on species) were orders of magnitude greater than losses incurred during the ookinete-to-oocyst transition (3- to 14-fold). There were no significant correlations between gametocyte and ookinete densities. Significant correlations between ookinete and oocyst densities existed for P. berghei, P. chabaudi, and P. yoelii (but not for P. vinckei), and were best described by nonlinear functions (P. berghei = sigmoid, P. chabaudi = hyperbolic, P. yoelii = sigmoid), indicating that conversion of ookinetes to oocysts in these species is density dependent. The upper theoretical limit for oocyst density on the mosquito midgut for P. chabaudi and P. yoelii (ca. 300 oocysts per midgut) was higher than for P. berghei (ca. 30 oocysts per midgut). This study provides basic information about population processes that occur during the early sporogonic development of some common laboratory model systems of malaria. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Parasitology Allen Press

Rodent Plasmodium: Population Dynamics of Early Sporogony within Anopheles stephensi Mosquitoes

,; ,; ,
The Journal of Parasitology , Volume 94 (5): 10 – Oct 2, 2008

Loading next page...
 
/lp/allen-press/rodent-plasmodium-population-dynamics-of-early-sporogony-within-foWfko3wXr

References (31)

Publisher
Allen Press
Copyright
American Society of Parasitologists
Subject
Development
ISSN
0022-3395
eISSN
1937-2345
DOI
10.1645/GE-1407.1
pmid
18576764
Publisher site
See Article on Publisher Site

Abstract

Early sporogony of Plasmodium parasites involves 2 major developmental transitions within the insect vector, i.e., gametocyte-to-ookinete and ookinete-to-oocyst. This study compared the population dynamics of early sporogony among murine rodent Plasmodium (Plasmodium berghei, Plasmodium chabaudi, Plasmodium vinckei, and Plasmodium yoelii) developing within Anopheles stephensi mosquitoes. Estimates of absolute densities were determined for gametocytes, ookinetes, and oocysts for 108 experimental infections. Total losses throughout early sporogony were greatest in P. vinckei (ca. 250,000-fold loss), followed by P. yoelii (ca. 70,000-fold loss), P. berghei (ca. 45,000-fold loss), and P. chabaudi (ca. 15,000-fold loss). The gametocyte-to-ookinete transition represented the most severe population bottleneck. Numerical losses during this transition (ca. 3,000- to 30,000-fold, depending on species) were orders of magnitude greater than losses incurred during the ookinete-to-oocyst transition (3- to 14-fold). There were no significant correlations between gametocyte and ookinete densities. Significant correlations between ookinete and oocyst densities existed for P. berghei, P. chabaudi, and P. yoelii (but not for P. vinckei), and were best described by nonlinear functions (P. berghei = sigmoid, P. chabaudi = hyperbolic, P. yoelii = sigmoid), indicating that conversion of ookinetes to oocysts in these species is density dependent. The upper theoretical limit for oocyst density on the mosquito midgut for P. chabaudi and P. yoelii (ca. 300 oocysts per midgut) was higher than for P. berghei (ca. 30 oocysts per midgut). This study provides basic information about population processes that occur during the early sporogonic development of some common laboratory model systems of malaria.

Journal

The Journal of ParasitologyAllen Press

Published: Oct 2, 2008

There are no references for this article.