Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Morphological Changes of Ascaris spp. Eggs During Their Development Outside the Host

Morphological Changes of Ascaris spp. Eggs During Their Development Outside the Host abstract : Information on the infective stage of Ascaris lumbricoides and the pathology caused by the parasite is widely available in the literature. However, information about early embryonic development of A. lumbricoides and its life cycle outside the host is limited. The purpose of this study was to describe the morphological changes within the developing embryo during incubation in vitro at 28 C, as well as to explore differences in egg viability during incubation. Ascaris suum eggs (4,000 eggs/ml), used as a model for A. lumbricoides , were placed for incubation in 0.1N H 2 SO 4 at 28 C in the dark for 21 days. Every day, sub-samples of approximately 100 A. suum eggs were taken from the incubation solution for microscopic evaluation. Development, morphological changes, and viability of the first 40 eggs were observed and documented with photos. During this study, 12 stages were identified in the developing embryo by standard microscopy, 2 of which had not been previously reported. By the end of the first wk, most developing embryos observed were in the late-morula stage (72.5%). On day 14 of incubation, 90% had developed to larva-1 stage, and by day 21, 100% had developed to larva-2 stage. No significant differences were found in the viability recorded in a continuum from day 5 to day 21 of incubation (chi-square, P > 0.05). The result of this study complements and expands the stages of development of Ascaris spp. outside the host previously reported in the literature. It also suggests the potential use of early stages of development of the nematode to determine viability and safety of sewage sludge, wastewater, or compost after treatment recommended by USEPA. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Parasitology Allen Press

Morphological Changes of Ascaris spp. Eggs During Their Development Outside the Host

Loading next page...
 
/lp/allen-press/morphological-changes-of-ascaris-spp-eggs-during-their-development-ctn9wz2RnV

References (21)

Publisher
Allen Press
Copyright
American Society of Parasitologists
Subject
FUNCTIONAL MORPHOLOGY
ISSN
0022-3395
eISSN
1937-2345
DOI
10.1645/GE-2821.1
pmid
21801007
Publisher site
See Article on Publisher Site

Abstract

abstract : Information on the infective stage of Ascaris lumbricoides and the pathology caused by the parasite is widely available in the literature. However, information about early embryonic development of A. lumbricoides and its life cycle outside the host is limited. The purpose of this study was to describe the morphological changes within the developing embryo during incubation in vitro at 28 C, as well as to explore differences in egg viability during incubation. Ascaris suum eggs (4,000 eggs/ml), used as a model for A. lumbricoides , were placed for incubation in 0.1N H 2 SO 4 at 28 C in the dark for 21 days. Every day, sub-samples of approximately 100 A. suum eggs were taken from the incubation solution for microscopic evaluation. Development, morphological changes, and viability of the first 40 eggs were observed and documented with photos. During this study, 12 stages were identified in the developing embryo by standard microscopy, 2 of which had not been previously reported. By the end of the first wk, most developing embryos observed were in the late-morula stage (72.5%). On day 14 of incubation, 90% had developed to larva-1 stage, and by day 21, 100% had developed to larva-2 stage. No significant differences were found in the viability recorded in a continuum from day 5 to day 21 of incubation (chi-square, P > 0.05). The result of this study complements and expands the stages of development of Ascaris spp. outside the host previously reported in the literature. It also suggests the potential use of early stages of development of the nematode to determine viability and safety of sewage sludge, wastewater, or compost after treatment recommended by USEPA.

Journal

Journal of ParasitologyAllen Press

Published: Feb 1, 2012

There are no references for this article.