Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper focuses on volatility modeling of the Johannesburg Stock Exchange (JSE) all share index and risk estimation using the Bayesian and frequentist approaches. A Bayesian Autoregressive Moving Average-Generalized Autoregressive Conditional Heteroskedasticity (BARMA-GARCH-t) modeling of the All Share Index (ALSI) at the Johannesburg Stock Exchange (JSE) under the assumption of Student-t innovations is presented. The ALSI data is for the years 2002 to 2013. Uncertainty about the true values of the GARCH parameters is incorporated into the analysis through a non-informative joint prior distribution. A comparative analysis is done with a standard GARCH model with Student-t innovations (ARMAGARCH- t) using the maximum likelihood (ML) method. Empirical results from this study show that BARMA-GARCH-t model captures well both the conditional and unconditional volatilities of the ALSI share index at the JSE. The BARMAGARCH- t model provides a better fit to the data compared to the bench mark model which is the ARMA-GARCH-t model. The results are important to stock brokers, risk and investment managers. JEL codes: C4; C53; G1 Keywords: Bayes; GARCH; portfolio management; Student-t distribution; risk management
Economics, Management, and Financial Markets – Addleton Academic Publishers
Published: Jan 1, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.